Solve these simultaneous equations and find the values of x and y. Equation 1: 2x + y = 7 Equation 2: 2x - y - 4 = 4 – x

Simultaneous equations are two equations with two unknowns. And they can be solved by either elimination or substitution method.For this example, we will use the elimination method. First of all to make it easier you would simplify the equations if possible. In this case equation 1 is already simplified, whereas equation 2 can be simplified from 2x – y – 4 = 4 – x to 3x – y = 8 by collecting the like terms. In this equation, the unknows are y and x. As there is only 1 y in both equations, we will eliminate the y and calculate the value of x first. As equation 1 has ‘+1y’ and equation 2 has ‘-1y’. We will add the 2 equation together in order to eliminate y. Which will equal 5x = 15, and then to find the value of x divide by 5 on both sides which means x =3. Then substitute the value of x into the original equation to find the value of y. Thus 2(3) + y = 7. Which means 6 + y = 7 and therefore y = 1. 

AC
Answered by Ashwin C. Maths tutor

4059 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Write the number 0.000000001 in standard form.


The equation of the line L1 is y = 3x – 2 The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel.


Please expand the brackets in the following equation to get a quadratic equation. Then, please show using the quadratic formula that the solutions to the equation are x=3 and x=5. Here is the starting equation: (x-3)(x-5)=0


How do I work out the area of a quarter circle with radius 6cm?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning