The bond angle in a molecule of ammonia (NH3) is 107 degrees so why, when part of a transition metal complex is the bond angle 109.5 degrees.

Ammonia is based off a tetrahedral shape, the central Nitrogen atom has 4 valence (outer) pairs of electrons, 3 in covalent bonds with Hydrogen atoms and one "lone pair" which are not bonded. The tetrahedral shape has bond angles of 109.5 degrees, but the lone pair exists closer to the nucleus than the bonding pairs and has a greater repulsive effect than the three bonding pairs, therefore pushing them closer together and decreasing the bond angle by 2.5 degrees. When in a transition metal complex the lone pair is co-ordinately (dative covalently) bonded to the central metal atom to form the transition metal complex. This means that all four valence pairs are bonding and have therefore equal repulsive effects, meaning that the bond angles are equal at 109.5 degrees.

DW
Answered by Daniel W. Chemistry tutor

58661 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

An iron-alloy nail (2.41g) is dissolved in 100cm3 acid. 10cm3 portions of this solution are titrated with KMnO4 (0.02M) and 9.80cm3 of KMnO4 was needed to react with iron solution. What % of iron by mass is in the nail?


Devise a simple synthetic route to an amide from a carboxylic acid. Give a mechanism for the final step and explain why the reagents are not added 1:1 in the final step


Explain the relative resistance to bromination of benzene compared with alkenes.


The molecular formula of TCDD is C12H4O2Cl4. Chlorine exists as two isotopes 35Cl (75%) and 37Cl (25%). How many molecular ion peaks are there? What is the mass of the most abundant one?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences