How does myelination affect nerve impulse conduction velocity?

Nerve impulses are propagated in the form of action potentials, involving the rapid depolarisation of the nerve cell membrane from  -70mV to +30mV, before repolarisation occurs returning the membrane potential to -70mV. This cycle of depolarisation and repolarisation is propagated along the nerve cell as an electrical signal. Myelinated axons are covered in a protective, lipid rich myelin sheath produced by Schwann cells. This insulates regions of the nerve cell, so they cannot depolarise. Regions that lack myelin are called “nodes of Ranvier” and these become the only areas where action potentials can form, resulting in “jumping” of the nerve impulse from node to node. This is called saltatory conduction. Saltatory conduction results in faster nerve impulse conduction velocity, as the action potentials can “jump” along the neuron. 

TW
Answered by Thomas W. Biology tutor

8083 Views

See similar Biology A Level tutors

Related Biology A Level answers

All answers ▸

Describe the process of DNA replication


Describe the structure of an antibody and relate it to it's function.


Can you describe the path of electrical conduction through the human heart?


I often understand the question and think I have answered it correctly, but I don't get all the marks for my answer. What am I doing wrong?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences