Why does the first ionisation energy increase across period 3?

The 1st ionisation energy is defined as the energy required to remove the outermost electron from one mole of gaseous atoms, forming one mole of gaseous 1+ ions. Moving from left to right the proton number increases across a period, therefore the nucleus becomes more positively charged. This increasing positive charge creates greater nuclear attraction between the positively charged nucleus and the negatively charges outermost electrons. Therefore more energy is required to remove these electrons from the atom. In the third period all of the outermost electrons occupy the third shell so electron shielding is constant and will not affect the ionisation energy. Referring back to the Definition of 1st ionisation, if the energy to remove the outermost electron increases then so to does the 1st ionisation energy.

HP
Answered by Hamish P. Chemistry tutor

1851 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Explain how the electron pair repulsion theory can be used to deduce the shape of, and the bond angle in, PF3


What evidence is there to support the delocalised model of benzene over Kekulé's model?


State and explain the general trend in the first ionisation energy across a period.


The enthalpy of combustion of ethanol is −1371 kJ mol−1 . The density of ethanol is 0.789 g cm−3 . Calculate the heat energy released in kJ when 1 dm3 of ethanol is burned.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences