Show that (1 - cos(2x)) / (1 + cos(2x)) = sec^2(x) - 1

First, take the side of the equation that looks most complicated because it often needs simplifying. This is the LHS in this case. The LHS has cos(2x) twice - therefore the double angle formula probably applies:cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x)In this case the cos(2x) = 2cos^2(x) - 1 looks most useful as we have sec^2(x) on the RHS of our equation and cos(x) = 1/sec(x).Sub the double angle formula into LHS:(1 - (2cos^2(x) - 1)) / (1 + (2cos^2(x) - 1)= (2 - 2cos^2(x)) / (2cos^2(x))= 2/2cos^2(x) - 2cos^2(x)/2cos^2(x)= sec^2(x) - 1= RHS.Therefore (1 - cos(2x)) / (1 + cos(2x)) = sec^2(x) - 1 

LG
Answered by Louis G. Maths tutor

6895 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The variable x=t^2 and the variable y=2t. What is dy/dx in terms of t?


If a circle passes through points (2,0) and (10,0) and it has tangent line along the y-axis, then what are the possible equations of the circle?


A curve, C, has equation y =(2x-3)^5. A point, P, lies on C at (w,-32). Find the value of w and the equation of the tangent of C at point, P in the form y =mx+c.


The air pressure in the cabin of a passenger plane is modelled by the equation: P(x) = 3cos(x/2) - sin(x/2) where x is the altitude. Express P(x) in the form Rcos(x/2 +z) where z is acute and in degrees and then find the maximum pressure


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning