Solve the simultaneous equations: 2x + 3y = 5 and 3x + 4y = 12

  1. 2x + 3y = 52. 3x + 4y = 12
    Firstly, you want to have the same amount of x variables, or y variables. To get the same x, we multiply 1. by 3, and multiply 2. by 2, giving us:
    3. 6x + 9y = 154. 6x + 8y = 24
    Now, subtract 4. from 3. and you get:y = -9
    Using this information, substitute it into any of the 4 equations, and solve to find x.
    Subbing into 3. gives us:6x + 9(-9) = 156x - 81 = 156x = 96x = 16
QO
Answered by Quincy O. Maths tutor

6037 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are 40 pencils in a box. There are 15 pens in a packet. John gives one pencil and one pen to each person at a conference. He has no pencils or pens left. How many boxes of pencils and how many packets of pens did John buy?


Edexcel November 2016 1H Maths. Q27


Why is n^0 always 1 and not 0?


What is the solution to the system of equations defined by (1) x+2y = 4 and (2) y+2x = 6?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences