Solve the simultaneous equations: 2x + 3y = 5 and 3x + 4y = 12

  1. 2x + 3y = 52. 3x + 4y = 12
    Firstly, you want to have the same amount of x variables, or y variables. To get the same x, we multiply 1. by 3, and multiply 2. by 2, giving us:
    3. 6x + 9y = 154. 6x + 8y = 24
    Now, subtract 4. from 3. and you get:y = -9
    Using this information, substitute it into any of the 4 equations, and solve to find x.
    Subbing into 3. gives us:6x + 9(-9) = 156x - 81 = 156x = 96x = 16
QO
Answered by Quincy O. Maths tutor

5843 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are 200 students in Year 10 110 are boys. There are 250 students in Year 11 140 are boys. Which year has the greater proportion of boys? (Taken from Nov 2014 AQA Unit 2)


Solve the simultaneous equations: 3x+2y = 11, 2x-5y=20


Solve the simultaneous equations: 2x + y = 18, x - y =6.


if b is two thirds of c. 5a = 4c Work out the ratio a : b : c


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences