What is the derivative with respect to x of the function f(x)=1+x^3+ln(x), x>0 ?

Despite the hideous view, we can apply to this function the same methodology as all the other ones: break it down to pieces. What we mean is that we recognize three terms inside f(x): one is the number 1 alone, a contant with derivative 0; another is the plolynomial function x^3 with derivative 3x^2; and the last one is the natural logarithm (in base e) with derivative 1/x. Note that the last term makes sense because we don't divide by 0 since our domain x>0 excludes that possibility. Finally, the derivative is lineal, meaning that the derivative of the sum is the sum of the derivative. This allows us to write the derivative of f with respect to x: df/dx(x)= 3x^2+1/x.

ML
Answered by Maria L. Maths tutor

3273 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use the chain rule to differentiate y=1/x^2-2x-1


Please Simplify: (2x^2+3x/(2x+3)(x-2))-(6/x^2-x-2))


Solve the simultaneous equations: y + 4x + 1 = 0, and y^2 + 5x^2 + 2x = 0.


The second and fourth term of a geometric series is 100 and 225 respectively. Find the common ratio and first term of the series. Round your answer to 2 d.p if necessary


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning