Integral between 0 and pi/2 of cos(x)sin^2(x)

The key point in here is noticing that the derivative of sin(x) is cos(x). That way, if we rename sin(x) as u , i.e u:=sin(x), the derivative will be du=cos(x)dx. So, inside the integral, instead of having cos(x)sin^2(x)dx we can have u^2du. This tecnique is called a change of variables. However, it is not completed since once we've changed the variable from x to u we need to change the limits of integration as well. This means that when x=0 then u=0 and when x=pi/2 then u=1 (check the graph of the sin function to guide yourself). This way we write:integral from 0 to pi/2 of cos(x)sin^2(x)dx= integral from 0 to 1 of u^2du= 1/3 of u^3 evaluated from 0 to 1= 1/31^3-1/30^3=1/3.The second equality is satisfied because the primitive of the polinomyal function u^2 is 1/3u ^3 since the derivative of 1/3u ^3 is u^2.

ML
Answered by Maria L. Maths tutor

4645 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The straight line with equation y = 3x – 7 does not cross or touch the curve with equation y = 2px^2 – 6px + 4p, where p is a constant. Show that 4p^2 – 20p + 9 < 0.


What's the point of writing my mathematics well if I don't get extra marks for it?


What is differentiation in mathematics and what does it represent?


Given the points P(-1,1) and S(2,2), give the equation of the line passing through P and perpendicular to PS.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning