Solve 4x/(x+1) - 3/(2x+1) = 1

Firstly multiply through by (x+1)(2x+1) to get rid of the fractions and then expand the brackets. Then gather the terms on one side to get a quadratic equation (ie 3x^2 - x -2=0) and then simply solve this either by inspection or using the quadratic formula. We see that trying x=1 indeed gets us 0 hence we know that one root of the equation is (x-1) now all that's left is finding the other root which can be found by 'working backgrounds' ie what multiplies with x-1 to get 3x^2 - x -2. Doing this we obtain x=-2/3.

RB
Answered by Raban B. Maths tutor

3744 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x) = x^3 - 13x^2 + 55x - 75 , find the gradient of the tangent at x=3


How to write an algebraic fraction in a given form e.g. (3+13x-6x^2)/(2x-3) as Ax + B + C/(2x-3) where A, B and C are natural numbers


Using the binomial theorem, find the coefficient of x^4*y^5 in (x-2y)^9.


How do we know which formulas we need to learn for the exam?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning