A circle with center C has equation x^2 + y^2 + 8x - 12y = 12

Circle equation = (x - a)2 + (y - b)2 = r2Where Centre coordinates (a, b) and radius 'r'Therefore x2 + y2 + 8x - 12y = 12 is to be rewritten in this formComplete the square to find a and bThis gives(x+4)2 - 16 + (y - 6)2 - 36 = 12Simplify(x+4)2 + (y - 6)2 = 64Therefore refering to the top two linesCentre of the circle is (-4, 6) and Radius of the circle is 8

HK
Answered by Henry K. Maths tutor

8551 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the first derivative of 2x^3+5x^2+4x+1 (with respect to x)


The curve C has equation: 2x^2y + 2x + 4y – cos (piy) = 17. Use implicit differentiation to find dy/dx in terms of x and y.


A curve has parametric equations x = 2 sin θ, y = cos 2θ. Find y in terms of x


Find the gradient of the tangent to the curve y=4x^2 - 7x at x = 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences