How do I integrate cos^2x with respect to x?

This can be a very tricky question if you do not know how to approach it. Our first instinct may be to try a substitution, but this gets us nowhere. In fact, the trick is to make use of the identity cos2x = 2cos^2x - 1. This can then be rearranged to give us (cos2x + 1)/2 = cos^2x. Using this identity, our integration problem has suddenly become a lot easier - we can take the constant 1/2 outside of the integral leaving us to integrate the expression cos2x + 1. Integrating cos2x is simply a matter of reversing the chain rule, so the result of this integration is (sin2x)/2 + x. Finally, we multiply this by 1/2 (the constant we took outside the integral before) to give us a final result of (sin2x)/4 + x/2. Of course, don't forget the +C assuming this is an indefinite integral.Note that the same identity can help us integrate sin^2x as well. This is because we can rewrite the identity as cos2x = 2cos^2x - 1 = 1 - 2in^2x.

RS
Answered by Raiad S. Maths tutor

12101 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Sketch the graphs of y = f(x), y = g(x) and find the point(s) where f and g intersect.


Why, how and when do we use partial fractions and polynomial long division?


Find the gradient of a straight line with the points P(5,3) and Q(8,12)


A block of mass 5 kg is being pushed over level ground by rod at 60 degrees to horizontal with force 40 N with acc. 1.5 what is the frictional force of the surface and draw a diagram with the forces acting on the block


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning