The equation x^2+ kx + 8 = k has no real solutions for x. Show that k satisfies k^2 + 4k < 32.

If a quadractic equation ax^2 + bx + c = 0 has no real solutions, this means that the discriminant is less than 0, i.e. b^2-4ac<0. Let's put our equation in this form: x^2 + kx + 8 = k rearranges to x^2 + kx + (8-k) = 0. So in this case a=1, b=k, c = 8-k. Therefore no real solutions means that k^2 - 41(8-k) < 0 (substituting our values of a, b and c) and then k^2 - 32 + 4k < 0 (multiplying out) and then k^2 + 4k < 32. (rearranging) And we're done!

TD
Answered by Tutor91955 D. Maths tutor

14473 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation 3^(5x-2)=4^(6-x), and show that the solution can be written in the form log10(a)/log10(b).


A circle A has equation x^2+y^2-6x-14y+54=0. Find a) the coordinates of the centre of A, b) the radius of the circle A.


In this question, take 'log' to mean 'log base 5'. Solve the equation log(x^2-5)-log(x) = 2*log(2)


Using Pythagoras' theorem, show that sin^2(x)+cos^2(x)=1 for all x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning