The equation x^2+ kx + 8 = k has no real solutions for x. Show that k satisfies k^2 + 4k < 32.

If a quadractic equation ax^2 + bx + c = 0 has no real solutions, this means that the discriminant is less than 0, i.e. b^2-4ac<0. Let's put our equation in this form: x^2 + kx + 8 = k rearranges to x^2 + kx + (8-k) = 0. So in this case a=1, b=k, c = 8-k. Therefore no real solutions means that k^2 - 41(8-k) < 0 (substituting our values of a, b and c) and then k^2 - 32 + 4k < 0 (multiplying out) and then k^2 + 4k < 32. (rearranging) And we're done!

TD
Answered by Tutor91955 D. Maths tutor

15237 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the first 3 terms, in ascending powers of x, of the binomial expansion of (2 – 9x)^4 giving each term in its simplest form.


A block of temperature H=80ºC sits in a room of constant temperature T=20ºC at time t=0. At time t=12, the block has temperature H=50ºC. The rate of change of temperature of the block (dH/dt) is proportional to the temperature difference of the block ...


Find the stationary point of the curve y = -2x^2 + 4x.


Find the values of A between and including 0 and 360 degrees for tan(2A) = 3tan(A)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning