How to solve the following for x: (2x+3)/(x-4) - (2x-8)(2x+1) = 1

(The full answer produced answer is annotated working out, but since this text box won't let me submit pictures, I'll do my best to transcribe)First, we gather the two fractions by using a common denominator:[(2x + 3)(2x+1) - (2x-8)(x-4)] / [(x-4)(2x+1)] = 1Then, we can multiply both sides of the equation by the common denominator to avoid having to deal with a fraction:(2x + 3)(2x+1) - (2x-8)(x-4) = (x-4)(2x+1)Expanding out the brackets allows us to gather like terms and simplify:4x^2 + 2x + 6x + 3 - [ 2x^2 - 8x - 8x + 32 ] = 2x^2 + x - 8x - 4with a second line of working:24x - 29 = -7x - 4and a third:31x = 25And so dividing both sides by 31 gives us a final answer of x = 25/31

CF
Answered by Cal F. Maths tutor

2945 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations 5x + 2y = 4 and x - y - 5 =0


2x^2-6x+5 can be written in the form a(x -b)^ 2 + c where a, b and c are positive numbers. Find a,b and c.


What grade did you achieve?


How do you work out compound interest?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences