How to solve the following for x: (2x+3)/(x-4) - (2x-8)(2x+1) = 1

(The full answer produced answer is annotated working out, but since this text box won't let me submit pictures, I'll do my best to transcribe)First, we gather the two fractions by using a common denominator:[(2x + 3)(2x+1) - (2x-8)(x-4)] / [(x-4)(2x+1)] = 1Then, we can multiply both sides of the equation by the common denominator to avoid having to deal with a fraction:(2x + 3)(2x+1) - (2x-8)(x-4) = (x-4)(2x+1)Expanding out the brackets allows us to gather like terms and simplify:4x^2 + 2x + 6x + 3 - [ 2x^2 - 8x - 8x + 32 ] = 2x^2 + x - 8x - 4with a second line of working:24x - 29 = -7x - 4and a third:31x = 25And so dividing both sides by 31 gives us a final answer of x = 25/31

CF
Answered by Cal F. Maths tutor

3212 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find an expression for the nth term of this sequence: 3 - 11 - 19 - 27 - 35 . The nth term of a different sequence is 2n^3 + 3. Write down the first 3 terms of this sequence.


A,B and C all lie on the line x^2 + y^2 = 49 where A is on the y axis, B is on the X axis and C is the mid point of the straight-line connecting A and B.


How do you factorise fully 3 a^3 b + 12 a^2 b^2 + 9 a^5 b^3?


What is the value of an investment of £4500 with compound interest of 1.3% after six years?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning