Find the differential of y(x)=(5x*Cos(3x))^2

Firstly I would state the substitution rule, letting 5xCos(3x)=w(x), and differentiating with respect to w(x). This gives y'(x)=2w'(x)(w(x)).I would then demonstrate the product rule stating where u and v are functions of x. That (uv)'=v'u+vu'. And apply this to the example giving w'(x)=5Cos(3x)-15xSin(3x).substituting w(x) and w'(x) back into the equation gives y'(x)=(10Cos(3x)-30xSin(3x))5xCos(3x)

HL
Answered by Harry L. Maths tutor

3350 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let f(x) = 2x^3 + x^2 - 5x + c. Given that f(1) = 0 find the values of c.


Find an equation of the circle with centre C(5, -3) that passes through the point A(-2, 1) in the form (x-a)^2 + (y-b)^2 = k


What is the general rule for differentiation?


Show that the line y = x - 7 does not meet the circle (x + 2)^2 + y^2 = 33.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences