Find the differential of y(x)=(5x*Cos(3x))^2

Firstly I would state the substitution rule, letting 5xCos(3x)=w(x), and differentiating with respect to w(x). This gives y'(x)=2w'(x)(w(x)).I would then demonstrate the product rule stating where u and v are functions of x. That (uv)'=v'u+vu'. And apply this to the example giving w'(x)=5Cos(3x)-15xSin(3x).substituting w(x) and w'(x) back into the equation gives y'(x)=(10Cos(3x)-30xSin(3x))5xCos(3x)

HL
Answered by Harry L. Maths tutor

3388 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

two balls of similar size masses m and 2m are moving at speeds u and 2u along a frictionless plane, they collide head on and are reflected, assuming that the coefficient of restitution of this collision is 1, what the speeds are afterwards in u


Why does 'x' need to be in radians to differentiate 'sin x'?


Differentiate y = xe^(2x).


Why do you not add the 'plus c' when finding the area under a graph using integration even though you add it when normally integrating?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning