Find the differential of y(x)=(5x*Cos(3x))^2

Firstly I would state the substitution rule, letting 5xCos(3x)=w(x), and differentiating with respect to w(x). This gives y'(x)=2w'(x)(w(x)).I would then demonstrate the product rule stating where u and v are functions of x. That (uv)'=v'u+vu'. And apply this to the example giving w'(x)=5Cos(3x)-15xSin(3x).substituting w(x) and w'(x) back into the equation gives y'(x)=(10Cos(3x)-30xSin(3x))5xCos(3x)

HL
Answered by Harry L. Maths tutor

3241 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x) is defined by f(x) = 3*x^3 + 2*x^2 - 7*x + 2. Find f(1).


Find the stationary points of y = (x-7)(x-3)^2.


A particle, P, moves along the x-axis. The displacement, x metres, of P is given by 0.5t^2(t^2 - 2t + 1), when is P instantaneously at rest


express (1+4(root7)) / (5+2(root7)) as a+b(root7), where a and b are integers


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences