Integration of ln(x)

Let f denote an integral sign, I will write the integrand in square brackets. We can use integration by parts to integrate ln(x), the "trick" here is to imagin ln(x) as 1 x ln(x). Integration by parts is given by f [(u)(dv/dx)]dx = uv - f [((du/dx)(v)]dx. Using this trick allows us to set dv/dx = 1 (now do it on your own from here out!), easily integrating to give us v = x. Then we just set u = ln(x) and straightforwardly differentiate to du/dv = 1/x. Inserting this into our by parts formula gives xln(x) - f [1]dx = xln(x) - x + c

AS
Answered by Amelia S. Maths tutor

2779 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area enclosed between C, the curve y=6x-x^2, L, the line y=16-2x and the y axis.


integrate (4cos^4 x -4cos^2x+1)^1/2


integrate 5x + 3(square root of x)


How to solve pully type questions in mechanics


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences