Integration of ln(x)

Let f denote an integral sign, I will write the integrand in square brackets. We can use integration by parts to integrate ln(x), the "trick" here is to imagin ln(x) as 1 x ln(x). Integration by parts is given by f [(u)(dv/dx)]dx = uv - f [((du/dx)(v)]dx. Using this trick allows us to set dv/dx = 1 (now do it on your own from here out!), easily integrating to give us v = x. Then we just set u = ln(x) and straightforwardly differentiate to du/dv = 1/x. Inserting this into our by parts formula gives xln(x) - f [1]dx = xln(x) - x + c

AS
Answered by Amelia S. Maths tutor

2847 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Event A: a customer asks for help. Event B a customer makes a purchase. We know: p(B) = 0.2 and p(A) knowing that he has asked for help is 75%. What is the probability of a customer to ask for help and make a purchase?


find the integral of f'(x)=2x+5


How do I find the derivative of two functions multiplied by each other?


Solve: 2 sin(2x) = (1-sin(x))cos(x) for 0<x<2*Pi and give any values of x, if any, where the equation is not valid


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences