Integration of ln(x)

Let f denote an integral sign, I will write the integrand in square brackets. We can use integration by parts to integrate ln(x), the "trick" here is to imagin ln(x) as 1 x ln(x). Integration by parts is given by f [(u)(dv/dx)]dx = uv - f [((du/dx)(v)]dx. Using this trick allows us to set dv/dx = 1 (now do it on your own from here out!), easily integrating to give us v = x. Then we just set u = ln(x) and straightforwardly differentiate to du/dv = 1/x. Inserting this into our by parts formula gives xln(x) - f [1]dx = xln(x) - x + c

AS
Answered by Amelia S. Maths tutor

3070 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the coefficient of x^4 in the expansion of (x+3)^7


Integrate this funtion f'(x)=2x +4 with respect to x (C1 integration)


How do I solve quadratic equation by completing the square : X^2 - 4X = 5


Find dy/dx when y = 2ln(2e-x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning