Over a year, the number of rabbits in a field increases by 25% and then by a further 30%. Originally there were 200 rabbits in the field how many were there at the end?

Originally the number of rabbits was 200. We therefore need to find 25% of 200 and then increase the value of 200 by the 25%, we will then know how many rabbits there are after the 25% increase. 25/100 x 200 = 50 200+50 = 250 rabbits We now need to repeat the same finding 30%, but this time from the 250 rabbits we just calculated, since it increased by a further 30% after the initial 25% increase. Finally we will add the 30% calculated to the 250 rabbits to get the final number of rabbits after on year. 30/100 x 250 = 75 250 + 75 = 325 rabbits

AE
Answered by Alba E. Maths tutor

2887 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand and simplify the following equation: 3(2a+2) + 4(b+4)


Max invests £2000 and gets 2.5% compound interest per year. Jade invests £1600 and gets 3.5% compound interest per year. Work out who will get the most interest by the end of 3 years.


Solve x^2-x-12=0


find the second degree equation that passes through the points: (0,1) (2,2) (1,0)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences