The curve C has the equation ye ^(–2x) = 2x + y^2 . Find dy/dx in terms of x and y.


differentiate both side with respect to x : (dy/dx)e^(-2x)+y(-2e^(-2x)) = 2+2y(dy/dx)
rearrange it : (-2y+e^(-2x))(dy/dy) = 2 + 2ye^(-2x) ==> dy/dx = ( 2 + 2ye^(-2x) ) / ( -2y+e^(-2x) )

JC
Answered by Jimmy C. Maths tutor

5454 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the substitution x = 2cosu, find the integral of dx/((x^2)(4-x^2)^1/2), evaluated between x=1 and x=sqrt(2).


Find the equation of the straight line that passes through the points (1,2) and (2,4)


Express 2x^2 +8x +7 in the form A(x+B)^2 + C, where A, B and C are constants


How to transform graphs of functions?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning