The curve C has the equation ye ^(–2x) = 2x + y^2 . Find dy/dx in terms of x and y.


differentiate both side with respect to x : (dy/dx)e^(-2x)+y(-2e^(-2x)) = 2+2y(dy/dx)
rearrange it : (-2y+e^(-2x))(dy/dy) = 2 + 2ye^(-2x) ==> dy/dx = ( 2 + 2ye^(-2x) ) / ( -2y+e^(-2x) )

JC
Answered by Jimmy C. Maths tutor

5391 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the gradient of a line?


Given that 9 sin^2y-2 sin y cos y=8 show that (tany - 4)(tany + 2)= 0


Show that the equation 2sin^2(x) + 3sin(x) = 2cos(2x) + 3 can be written as 6sin^2(x)+3sin(x) - 5 = 0. Hence solve for 0 < x < 360 degrees. Giving your answers to 1.d.p.


The curve C has the equation y = 1/2x^3 - 9x^3/2 + 8/x + 30, find dy/dx. Show that point P(4, -8) lies on C


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning