The curve C has the equation ye ^(–2x) = 2x + y^2 . Find dy/dx in terms of x and y.


differentiate both side with respect to x : (dy/dx)e^(-2x)+y(-2e^(-2x)) = 2+2y(dy/dx)
rearrange it : (-2y+e^(-2x))(dy/dy) = 2 + 2ye^(-2x) ==> dy/dx = ( 2 + 2ye^(-2x) ) / ( -2y+e^(-2x) )

JC
Answered by Jimmy C. Maths tutor

5411 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

p(x)=2x^3 + 7x^2 + 2x - 3. (a) Use the factor theorem to prove that x + 3 is a factor of p(x). (b) Simplify the expression (2x^3 + 7x^2 + 2x - 3)/(4x^2-1), x!= +- 0.5


Solve the Equation: 2ln(x)−ln (7x)=1


Differentiate the following equation: y = 2(x^3) - 6x


Given that y = 16x^2 + 7x - 3, find dy/dx [3 marks]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning