How/when should I use the product rule for differentiation?

The product rule can be used to differentiate a function that is formed of the product of two other functions;

e.g f(x)=x2ex

the product rule is as follows; if f(x) is split up into u.v (in this case u would be x2 and v would be ex), the derivative of th whole function is (u.dv/dx) + (v.du/dx)

so in this case u=x2, following standard differentiation du/dx= 2x

v=ex, dv/dx=ex

u.dv/dx=x2ex

v.du/dx=2xex

so the whole function differentiated = ex(x2+2x)

 

AT
Answered by Abi T. Maths tutor

6490 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the trigonometric identity (sinx)^2 + (cosx)^2 = 1, show that (secx)^2 = (tanx)^2 + 1 is also a trigonometric identity.


Differentiate y=x^(-1/2)-x


How do you solve a quadratic inequality eg find the values of x for which x^2 -6x +2 < -3


using the substitution u=6-x^2 integrate (x^3)/(6-x^2)^1/2 with respect to x, between 1 and 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning