How/when should I use the product rule for differentiation?

The product rule can be used to differentiate a function that is formed of the product of two other functions;

e.g f(x)=x2ex

the product rule is as follows; if f(x) is split up into u.v (in this case u would be x2 and v would be ex), the derivative of th whole function is (u.dv/dx) + (v.du/dx)

so in this case u=x2, following standard differentiation du/dx= 2x

v=ex, dv/dx=ex

u.dv/dx=x2ex

v.du/dx=2xex

so the whole function differentiated = ex(x2+2x)

 

AT
Answered by Abi T. Maths tutor

6750 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The first term of an infinite geometric series is 48. The ratio of the series is 0.6. (a) Find the third term of the series. (b) Find the sum to infinity. (c) The nth term of the series is u_n. Find the value of the sum from n=4 to infinity of u_n.


given that at a time t, a particle is accelerating in the positive x-direction at 1/t ms^-2, calculate the velocity and the displacement of the particle at time t = 2s


Use logarithms to solve the equation 2^(n-3) = 18000, giving your answer correct to 3 significant figures.


how do you differentiate y=x^2 from first principles?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning