evaluate the integral of lnx

this is an example of an integration by parts problem, we must use integration by parts to evaluate this integral;although this would not be entirely obvious as the integral does not seem to be the product of two functions. The key to successfully evaluating this integral is noting that lnx= 1*lnx we can consider this as a product of two functions now we can let u=lnx and differentiating both sides gives du=1/x dx. we also let dv=1 dx and hence integrating both sides yields v=x. applying the integration by parts formula will give us the integral of lnx being equal to xlnx -x + C

AR
Answered by Aaron R. Maths tutor

2919 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Calculate the indefinite integral of xsinx


Find the stationary points of the curve y=x^4-8x^2+3 and determine their nature.


How can the trapezium rule be used to estimate a definite integral?


A sequence is defined as: U(n+1) = 1/U(n) where U(1)=2/3. Find the sum from r=(1-100) for U(r)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning