Why is the derivative of the exponential function itself?

The exponential function is defined as a power series, which we may (for reasons that are beyond the scope of A-level) differentiate term by term to get another power series. The general term of the series differentiates to the term before it, the first term is 1 so disappears and the series is infinite which means the whole series differentiates to itself!

GB
Answered by George B. Maths tutor

4542 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=ln(2x^2) with respect to x


Write down three linear factors of f(x) such that the curve of f(x) crosses the x axis at x=0.5,3,4. Hence find the equation of the curve in the form y = 2(x^3) + a(x^2) + bx + c.


Find the value of: d/dx(x^2*sin(x))


Differentiate: ln((e^x+1)/e^x-1))


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning