integrate the following: 2x^4 - 4/sqrt(x) +3 with respect to x

The 3 terms of this equation can be integrated separately. The general integration of xn is (xn+1)/n+1 where n is a real number not equal to -1. This can be applied to the terms 2x4, -4/sqrt(x) and 3 separately. 2x5 becomes (2x5)/5. -4/sqrt(x) can be rewritten as -4x-0.5 which integrates as -4x0.5/(0.5) which can be simplified as -8sqrt(x). Finaly, 3 will become 3x (this is because 3 can be rewritten as 3x0 so will therefore integrate as 3x).
All together this gives the following equation as the solution: (2x5 )/5- 8sqrt(x) +3x + C (don't forget the +C after every integration)

AF
Answered by Adrien F. Maths tutor

3709 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Two forces P and Q act on a particle. The force P has magnitude 7 N and acts due north. The resultant of P and Q is a force of magnitude 10 N acting in a direction with bearing 120°. Find the magnitude of Q and the bearing of Q.


Find a solution to sec^(2)(x)+2tan(x) = 0


How do I solve equations like 3sin^2(x) - 2cos(x) = 2


Solve the pair of simultaneous equations; (1) y + 4x + 1 = 0, (2) y^2 + 5x^2 + 2x = 0 .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning