Using implicit differentiation, write the expression "3y^2 = 4x^3 + x" in terms of "dy/dx"

To differentiate this expression with respect to "x", any terms comprising of an "x" must multiply their powers with their numerical values and subtract 1 from the power. However to differentiate a non-"x" term with respect to "x" we need to do it differently. The value of the "y" term must be multiplied by "dy/dx" before it can be differentiated as normal. The process looks like this:
3y2 -> 3y2 (dy/dx) -> 6y(dy/dx). Therefore the differential is 6y(dy/dx) = 12x2 + 1. However, the question asks for the answer in terms of "dy/dx", so we must manipulate the expression by dividing both sides by "6y". Then we get the final answer of:dy/dx = (12x2 + 1)/6y.

BW
Answered by Brendan W. Maths tutor

3392 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I add up the integers from 1 to 1000 without going insane?


How can we solve a two-equation, two-unknown values?


How do we know that the derivative of x^2 is 2x?


Express '6cos(2x) +sin(x)' in terms of sin(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences