Find the first three terms of the binomial expansion of (3 + 6x)^(1/2).

To find the binomial expansion of this expression we need to use a formula. The formula states that for expressions of (1 + x)n it can be written as: 1 + nx + (n(n-1)x2)/2 ...
As our initial expression does not contain a "1" we need to manipulate it first. Remove a factor of 3 from our expression, taking care to keep the power the same, giving " 31/2(1 + 2x)1/2 ". From here we can substitute in our values, to give a binomial expansion of 31/2(1 + x - x/2). This can further be simplified by bringing the factor back into the bracket.

BW
Answered by Brendan W. Maths tutor

6214 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use calculus to find the set of values of x for which f(x) = x^3 - 9x is an increasing function.


What does a 95% confidence interval reflect?


What is the integral of x^2 sin(x) between the limits 0 and π/2


Integrate by parts the following function: ln(x)/x^3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning