Find the first three terms of the binomial expansion of (3 + 6x)^(1/2).

To find the binomial expansion of this expression we need to use a formula. The formula states that for expressions of (1 + x)n it can be written as: 1 + nx + (n(n-1)x2)/2 ...
As our initial expression does not contain a "1" we need to manipulate it first. Remove a factor of 3 from our expression, taking care to keep the power the same, giving " 31/2(1 + 2x)1/2 ". From here we can substitute in our values, to give a binomial expansion of 31/2(1 + x - x/2). This can further be simplified by bringing the factor back into the bracket.

BW
Answered by Brendan W. Maths tutor

5835 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is differentiation


Given that y= 5x^2 + 2x , find dy/dx


Solve the following: sinx - cosx = 0 for 0≤x≤360


What is differentiation and how is it done?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences