Find the first three terms of the binomial expansion of (3 + 6x)^(1/2).

To find the binomial expansion of this expression we need to use a formula. The formula states that for expressions of (1 + x)n it can be written as: 1 + nx + (n(n-1)x2)/2 ...
As our initial expression does not contain a "1" we need to manipulate it first. Remove a factor of 3 from our expression, taking care to keep the power the same, giving " 31/2(1 + 2x)1/2 ". From here we can substitute in our values, to give a binomial expansion of 31/2(1 + x - x/2). This can further be simplified by bringing the factor back into the bracket.

BW
Answered by Brendan W. Maths tutor

6309 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

write the vector equation of a line passing through (1,-1,2) and (2,2,2).


How do you intergrate ln(x)?


y=20x-x^2-2x^3. Curve has a stationary point at the point M where x=-2. Find the x coordinate of the other stationary point of the curve and the value of the second derivative of both of these point, hence determining their nature.


Use the geometric series formula to find the 9th term in this progression : 12 18 27...


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning