Solve the simultaneous equations E.g. 2x + y = 18 and x − y = 6.

Simultaneous equations can be solved in many ways. The two main ways are "solving for x and y" and the other is "substituting for x and y". Because in this example we are given "linear" equations (ask student if they know the difference between linear and quadratic), we will use the latter method.
First rearrange x − y = 6 for x, (ask if they know how to do this), x=6+y. Then sub this into the first equation (again ask if they know how to sub) as follows 2(6+y) + y = 18. Next simplify this by "collecting all like terms" 3y=6, then "solve for y" by dividing by 3 thus y=2. Finally go back to the second equation and sub this y to find x as follows, x - (2) = 6, meaning x = 8. If there is time use the first equation to check your answer 2(8)+(2) = 18.

AF
Answered by Adil F. Maths tutor

4893 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

solve this simultaneous equation: 4x+ y = 12 , 2x+ y = 8


Emily bought 3 books and 2 apples, and she spent £19, while her brother, John, spent £15 on 1 book and 5 apples. What is the cost of one book and one apple?


Solve the simultaneous equations “x^2+y^2=4” and “x=2-y”. What does this tell us about the circle centred on the origin, with radius 2, and the straight line with y-intercept 2 and gradient -1?


How do you divide mixed fractions? e.g. (1(1/5)) / (3/4)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning