Solve the simultaneous equations E.g. 2x + y = 18 and x − y = 6.

Simultaneous equations can be solved in many ways. The two main ways are "solving for x and y" and the other is "substituting for x and y". Because in this example we are given "linear" equations (ask student if they know the difference between linear and quadratic), we will use the latter method.
First rearrange x − y = 6 for x, (ask if they know how to do this), x=6+y. Then sub this into the first equation (again ask if they know how to sub) as follows 2(6+y) + y = 18. Next simplify this by "collecting all like terms" 3y=6, then "solve for y" by dividing by 3 thus y=2. Finally go back to the second equation and sub this y to find x as follows, x - (2) = 6, meaning x = 8. If there is time use the first equation to check your answer 2(8)+(2) = 18.

AF
Answered by Adil F. Maths tutor

4814 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Let f be a function of a real variable into the real domain : f(x) = x^2 - 2*x + 1. Find the roots and the extremum of the function f.


The equation of a curve is y = x^2 + ax + b where a and b are integers. The points (0,-5) and (5,0) lie on the curve. Find the coordinates of the turning point of the curve.


Solve the simultaneous equations: 12x - 4y = 12 (1) and 3x + 2y = 12 (2)


Expand the brackets: (3a+3)(a+4)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning