Solve the simultaneous equations E.g. 2x + y = 18 and x − y = 6.

Simultaneous equations can be solved in many ways. The two main ways are "solving for x and y" and the other is "substituting for x and y". Because in this example we are given "linear" equations (ask student if they know the difference between linear and quadratic), we will use the latter method.
First rearrange x − y = 6 for x, (ask if they know how to do this), x=6+y. Then sub this into the first equation (again ask if they know how to sub) as follows 2(6+y) + y = 18. Next simplify this by "collecting all like terms" 3y=6, then "solve for y" by dividing by 3 thus y=2. Finally go back to the second equation and sub this y to find x as follows, x - (2) = 6, meaning x = 8. If there is time use the first equation to check your answer 2(8)+(2) = 18.

AF
Answered by Adil F. Maths tutor

4713 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

solve; (6x - 2)/2 - (4x+7)/3 = 1-x


5 tins of soup have a total weight of 1750 grams. 4 tins of soup and 3 packets of soup have a total weight of 1490 grams. Work out the total weight of 3 tins of soup and 2 packets of soup.


1


A football pitch has a length of the xm. Its width is 25m shorter than the length. The area of the pitch is 2200m2. Show that x2 - 25x - 2200 =0 and work out the length of the football pitch.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning