A curve is defined by the parametric equations; x=(t-1)^3, y=3t-8/(t^2), t~=0. Find dy/dx in terms of t.

dy/dx=(dy/dt)*(dt/dx); dy/dt=3+16t-3; dx/dt=3(t-1)2; dt/dx=1/3(t-1)2; dy/dx=(3+16t-3)/3(t-1)2

NC
Answered by Nadia C. Maths tutor

3642 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation 2x^2y+2x+4y-cos(pi*y)=17 A) Use implict differenciation to find dy/dx B) point P(3,0.5) lies on C, find the x coodinate of the point A at which the normal to C at P meets the x axis.


Find the centre coordinates, and radius of the circle with equation: x^2 + y^2 +6x -8y = 24


What is [(x+1)/(3x^(2)-3)] - [1/(3x+1)] in its simplest form?


Differentiate sin(x)cos(x) using the product rule.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning