A curve is defined by the parametric equations; x=(t-1)^3, y=3t-8/(t^2), t~=0. Find dy/dx in terms of t.

dy/dx=(dy/dt)*(dt/dx); dy/dt=3+16t-3; dx/dt=3(t-1)2; dt/dx=1/3(t-1)2; dy/dx=(3+16t-3)/3(t-1)2

NC
Answered by Nadia C. Maths tutor

3596 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the equation of the normal line to the curve y = 3x^3 - 6x^2 at the point (1, 4)?


Differentiate arctan(x) with respect to x. Leave your answer in terms of x


Given that y = x^4 + x^(1/3) + 3, find dy/dx


The curve C has equation 2yx^2 + 2x + 4y - cos(πy) = 45. Using implicit differentiation, find dy/dx in terms of x and y


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning