A curve is defined by the parametric equations; x=(t-1)^3, y=3t-8/(t^2), t~=0. Find dy/dx in terms of t.

dy/dx=(dy/dt)*(dt/dx); dy/dt=3+16t-3; dx/dt=3(t-1)2; dt/dx=1/3(t-1)2; dy/dx=(3+16t-3)/3(t-1)2

NC
Answered by Nadia C. Maths tutor

3355 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find minimum and maximum of x^2+1 if they exist


Consider the functions f and g where f (x) = 3x − 5 and g (x) = x − 2 . (a) Find the inverse function, f^−1 . (b) Given that g^−1(x) = x + 2 , find (g^−1 o f )(x) . (c) Given also that (f^−1 o g)(x) = (x + 3)/3 , solve (f^−1 o g)(x) = (g^−1 o f)(x)


Explain the chain rule of differentiation


Find dy/dx such that y=(e^x)(3x+1)^2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences