Complete the indefinite integral : ∫x lnx dx

Use the formula: ∫uv' dx = uv - ∫u'v dx (use I = the integral we're looking for)Note we cant integrate ln x easily but we can differentiate into 1/x so we use:u = ln x and v' = x we have u' = 1/x and v = x2/2 subbing these values into the above formula we get:I = x2/2 lnx - ∫1/x x2/2 dx = x2/2 lnx - ∫x/2 dx= x2/2 lnx - x2/4 + C

KD
Answered by Katy D. Maths tutor

5746 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When integrating, why do we add a constant to the resulting equation?


When you integrate, why do you need to add a +C on the end?


Evaluate the indefinite integral: ∫ (e^x)sin(x) dx


Differentiate y = 2e^(2x+1)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences