Complete the indefinite integral : ∫x lnx dx

Use the formula: ∫uv' dx = uv - ∫u'v dx (use I = the integral we're looking for)Note we cant integrate ln x easily but we can differentiate into 1/x so we use:u = ln x and v' = x we have u' = 1/x and v = x2/2 subbing these values into the above formula we get:I = x2/2 lnx - ∫1/x x2/2 dx = x2/2 lnx - ∫x/2 dx= x2/2 lnx - x2/4 + C

KD
Answered by Katy D. Maths tutor

6169 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the product rule, differentiate: y = (x^2 - 1)(x^3 + 3).


Find the exact value of the gradient of the curve y = e^(2- x)ln(3x- 2). at the point on the curve where x = 2.


A straight line passes through the point (2,1) and has a gradient of 3. Find the co-ordinates of the points where this line intersects the axes


How do you find the gradient of a parametric equation at a certain point?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning