Solve the differential equation (1 + x^2)dy/dx = x tan(y)

Firstly rearrange the equation so that only dy/dx is on the left hand sidedy/dx = (x/(1+x^2)) tan(y)Now separate the variables such that the x terms are on one side with the dx, and the y terms are on the other side with the dy. Now we can place integral signs on both sides.∫ 1/tan(y) dy = ∫ (x/(1+x^2)) dx
Now use the identity cot(y) = 1/tan(y)
∫ cot(y) dy = ∫ (x/(1+x^2)) dx
Now integrate both sides and remember to include the constant of integration, the '+c'
ln |sin(y)| = (1/2)ln |1+x^2| + c

CG
Answered by Christian G. Maths tutor

6354 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the equation of the normal line to the curve y = 3x^3 - 6x^2 at the point (1, 4)?


How to express (4x)/(x^2-9)-2/(x+3)as a single fraction in its simplest form.


A ball is thrown from ground level at an angle of 30 degrees from the horizontal with a velocity of 20 m/s. It just clears a wall with a height of 5m, from this calculate the distances that the wall could be from the starting position.


Find the stationary point on the line of y = 6x - x^2 and state whether this point is a maximum or a minimum


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning