Factorise 6x^2 + 7x - 3=0

In order to solve the equation, we need to find a way to break the '7x' term in the middle that allows factorisation. We also need to consider the fact that the last term '-3x' has a minus sign. This broadens the possibilities of combinations that allow for factorisation.
After various attempts, we realise that 7x = -2x + 9x. Plugging this into the initial equation, we obtain 6x^2 - 2x + 9x - 3 = 0. After the initial factorisation, we obtain 2x(3x-1) + 3(3x-1)=0. This can be written as (2x+3)(3x-1)=0.
Qed. This means that the problem is solved.

SM
Answered by Silvia M. Maths tutor

7446 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

AS Maths ->Expresss x^2 + 3x + 2 in the form (x+p)^2 + q... where p and q are rational number


How do I do binomial expansions for positive integer n?


The function f(x) is defined by f(x) = 1 + 2 sin (3x), − π/ 6 ≤ x ≤ π/ 6 . You are given that this function has an inverse, f^ −1 (x). Find f^ −1 (x) and its domain


Find the turning points of the curve y = 3x^4 - 8x^3 -3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences