Show that the line with equation ax + by + c = 0 has gradient -a/b and cuts the y axis at -c/b?

This question involves inspecting the answers that have been provided to us. We have been given a constant gradient, and a point at which the line given by the equation cuts the y axis. This, therefore, means that this is a straight line equation, and can be rearranged in the form y = mx + c , where m is the gradient, and c is the y-axis intercept. Moving 'ax' and 'c' to the other side of the equation, and dividing by 'b', we get the straight line equation y = (-a/b)x - c/b . An example of what this straight line graph may look like can be shown on the whiteboard with example values.

DE
Answered by Dominic E. Maths tutor

8972 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that the derivative of tan(x) is sec^2(x), where sec(x) is defined as 1/cos(x). [Hint: think of tan(x) as a quotient of two related functions and apply the appropriate identity]


Use the substitution u=cos(2x)to find ∫(cos(2x))^2 (sin(2x))^3dx


Express 2x^2 +8x +7 in the form A(x+B)^2 + C, where A, B and C are constants


Prove that n is a prime number greater than 5 then n^4 has final digit 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning