Show that the line with equation ax + by + c = 0 has gradient -a/b and cuts the y axis at -c/b?

This question involves inspecting the answers that have been provided to us. We have been given a constant gradient, and a point at which the line given by the equation cuts the y axis. This, therefore, means that this is a straight line equation, and can be rearranged in the form y = mx + c , where m is the gradient, and c is the y-axis intercept. Moving 'ax' and 'c' to the other side of the equation, and dividing by 'b', we get the straight line equation y = (-a/b)x - c/b . An example of what this straight line graph may look like can be shown on the whiteboard with example values.

DE
Answered by Dominic E. Maths tutor

8971 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The straight line with equation y = 3x – 7 does not cross or touch the curve with equation y = 2px^2 – 6px + 4p, where p is a constant. Show that 4p^2 – 20p + 9 < 0.


If y = 4x^3 - 6x^2 + 7 work out dy/dx for this expression


Two points have coordinates (1,-6) and (-2,3). Find the equation of the line which joins them, and their midpoint.


Using trigonometric identities, show that (cos(x) + sin(x))^2=1+sin(2x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning