Solve the following simultaneous equations: 3x + y = 11 2x + y = 8

Start off by determining which unknowns have the same coefficient-      In this case it would be y as the coefficient of y is 1 in both equationsThen make both equations equal to y-      So 3x+y= 11 would become y= 11-3x2x+y= 8 would become y=8-2xNow that both equations are equal to y, this means the must be equal to each otherso we can re-write the equations like this: -      11-3x=8-2xTo solve for x we need to get all the x's on one side, and all the numbers on the other side-      Because they are equal, what we do to one side we must do to the other-      If we add 3x to each side we will get: 11=8+x-      Then to get all the numbers on the opposite side, we'd need to -8 from both sides, this would give us: 3=xSo now we know x=3, to find y we can substitute x into either of the very first equations-      If we take 2x+y=8 and substitute in x=3: 2(3)+y=8 which is the same as 6+y=8-      Which would mean, y=2So we have our answer, x=3 and y=2-      you can check this by substituting x and y into the other first equation (3x + y = 11)-      3(3) + 2= 9+2 =11

AR
Answered by Amelia R. Maths tutor

4298 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The circle c has equation x^2 + y^2 = 1. The line l has gradient 3 and intercepts the y axis at the point (0, 1). c and l intersect at two points. Find the co-ordinates of these points.


How do I expand (2x+5)(9x-2)?


Remove the brackets: −{−2[x−3(y−4)]−5(z+6)}


There are 10 beads in a bag. Four beads are green, six are black. If three beads are taken at random without replacement, what is the probability that they are the same colour?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning