Solve the quadratic: 3x^2+4x = 20 to find x.

Quadratic formula: where ax^2+bx+c =0, x = (-b±√(b^2-4ac))/2a.Rearrange the formula in the question to get 3x^2+4x-20 = 0.From the quadratic in the question we can see that a = 3, b = 4, c = -20.Therefore x = (-4±√(4^2 - (43-20)))/(2*3)= (-4±√(16 - -240))/6 = (-4±√256)/6= (-4±16)/6= -20/6 AND 12/6= -10/3 AND 2Therefore x = -3.3r AND 2.

SF
Answered by Samuel F. Maths tutor

5472 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Write x^2 + 6x - 10 in the form ((x+a)^2)+b?


What actully is the derivative of a function? What does it represent?


There are 9 counters in a bag. 7 of the counters are green. 2 of the counters are blue. Ria takes at random two counters from the bag. Work out the probability that Ria takes one counter of each colour. You must show your working.


How do I find the roots and and coordinates of the vertex of the graph y = 2x^2 + 4x - 8 ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning