Show that r^2(r + 1)^2 - r^2(r - 1)^2 ≡ 4r^3.

Start with the left hand side (LHS) of the equation. r^2(r + 1)^2 - r^2(r - 1)^2Take the equivalent terms from the separate parts of the LHS outside of set of brackets.r^2[(r + 1)^2 - (r - 1)^2]Expand the interior of the square bracket.r^2[(r^2 + 2r + 1) - (r^2 - 2r + 1)]Simplify the square bracket.r^2[4r]This is equivalent to 4r^3, as desired by the question.

AD
Answered by Andrew D. Maths tutor

6874 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative with respect to x and the x-coordinate of the stationary point of: y=(4x^2+1)^5


Find d^2y/dx^2 for y=4x^4−3x^3−6x^2+x


Given that y=sin2x(3x-1)^4, find dy/dx


Find dy/dx in terms of t for the curve defined by the parametric equations: x = (t-1)^3, y = 3t - 8/t^2, where t≠0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences