Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.

To satisfy the condition of substracting two fractions with unlike denominators, a common denominator needs to be found. By recognizing x^2 - 9 = (x-3)(x+3), we can rewrite the question as 4x/(x-3)(x+3) - [2/(x+3)] * [(x-3)/(x-3) ]= [4x-2(x-3)]/[(x+3)(x-3)] = 2(x+3)/(x+3)(x-3) = 2/(x-3)The answer is 2/(x-3).

YC
Answered by Ye C. Maths tutor

6282 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If I have the equation of a curve, how do I find its stationary points?


A smooth 4g marble is held at rest on a smooth plane which is fixed at 30 degrees to a horizontal table. The marble is released from rest - what speed is the marble travelling at 5 seconds after being released? Let g = 9.8ms^2


A curve has equation y^3+2xy+x^2-5=0. Find dy/dx.


Find the equation of the normal to the curve at the point (1, -1 ): 10yx^2 + 6x - 2y + 3 = x^3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning