Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.

To satisfy the condition of substracting two fractions with unlike denominators, a common denominator needs to be found. By recognizing x^2 - 9 = (x-3)(x+3), we can rewrite the question as 4x/(x-3)(x+3) - [2/(x+3)] * [(x-3)/(x-3) ]= [4x-2(x-3)]/[(x+3)(x-3)] = 2(x+3)/(x+3)(x-3) = 2/(x-3)The answer is 2/(x-3).

YC
Answered by Ye C. Maths tutor

5679 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let p(x) =30x^3 - 7x^2 -7x + 2. Prove that (2x+1) is a factor of p(x).


A machine is used to manufacture custom spoilers for two types of sports car( Car A and Car B0. Each day, in a random order, n are produced for Car A and m for Car B. What is the probability that the m spoilers for Car B are produced consecutively?


y(x) = x^2(1-x)e^-2x , find y'(x) in the form of g(x)e^-2x where g(x) is a cubic function to be found


Use calculus to find the set of values of x for which f(x) = x^3 - 9x is an increasing function.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences