Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.

To satisfy the condition of substracting two fractions with unlike denominators, a common denominator needs to be found. By recognizing x^2 - 9 = (x-3)(x+3), we can rewrite the question as 4x/(x-3)(x+3) - [2/(x+3)] * [(x-3)/(x-3) ]= [4x-2(x-3)]/[(x+3)(x-3)] = 2(x+3)/(x+3)(x-3) = 2/(x-3)The answer is 2/(x-3).

YC
Answered by Ye C. Maths tutor

5838 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is 2 + 2 not equal to 12?


Differentiate and find the stationary point of the equation y = 7x^2 - 2x - 1.


Express (3 + 13x - 6x^2)/(2x-3) in the form Ax + B + C/(2x - 3)


Find d^2y/dx^2 for y=4x^4−3x^3−6x^2+x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences