Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.

To satisfy the condition of substracting two fractions with unlike denominators, a common denominator needs to be found. By recognizing x^2 - 9 = (x-3)(x+3), we can rewrite the question as 4x/(x-3)(x+3) - [2/(x+3)] * [(x-3)/(x-3) ]= [4x-2(x-3)]/[(x+3)(x-3)] = 2(x+3)/(x+3)(x-3) = 2/(x-3)The answer is 2/(x-3).

YC
Answered by Ye C. Maths tutor

6045 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I calculate the eigenvalues and eigenvectors of a 2x2 matrix, and what is the point of doing this calculation?


Find the centre coordinates, and radius of the circle with equation: x^2 + y^2 +6x -8y = 24


Can you differentiate the following function using two methods:- y = e^(2x+1)


Find 1 + (1 + (1 + (1 + (1 + ...)^-1)^-1)^-1)^-1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning