Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.

To satisfy the condition of substracting two fractions with unlike denominators, a common denominator needs to be found. By recognizing x^2 - 9 = (x-3)(x+3), we can rewrite the question as 4x/(x-3)(x+3) - [2/(x+3)] * [(x-3)/(x-3) ]= [4x-2(x-3)]/[(x+3)(x-3)] = 2(x+3)/(x+3)(x-3) = 2/(x-3)The answer is 2/(x-3).

YC
Answered by Ye C. Maths tutor

5797 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show, by counter-example, that the statement "If cos(a) = cos(b) then sin(a) = sin(b)" is false.


How do you form a Cartesian equation from two parametric equations?


Show how you can rewrite (x+1)(x-2)(x+3) into the form of ax^3 + bx^2 + cx + d


Express 6sin(2x)+5cos(x) in the form Rsin(x+a) (0degrees<x<90degrees)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences