Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.

To satisfy the condition of substracting two fractions with unlike denominators, a common denominator needs to be found. By recognizing x^2 - 9 = (x-3)(x+3), we can rewrite the question as 4x/(x-3)(x+3) - [2/(x+3)] * [(x-3)/(x-3) ]= [4x-2(x-3)]/[(x+3)(x-3)] = 2(x+3)/(x+3)(x-3) = 2/(x-3)The answer is 2/(x-3).

YC
Answered by Ye C. Maths tutor

6280 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the turning point on the curve f(x) = 2x^2 - 2x + 4


What are the necessary conditions for a random variable to have a binomial distribution?


Differentiate Y = 4X/(X^2+5) and give dy/dx in its simplest form


The line AB has equation 5x + 3y + 3 = 0. The line AB is parallel to the line y = mx + 7. Find the value of m.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning