Solve algebraically the simultaneous equations x^2 +y^2 =25, y – 3x = 13

This question is done by substituting either the x or y. To do this, rearrange the second equation to make y the subject. We make y the subject as it keeps the equation and calculation simple. After rearranging the equation, we get y=13+3x. Now, sub this into the first equation to get x^2+(13+3x)^2=25. Expand the brackets out first to get x^2+169+6x+9x^2=25. Then add or subtract (in this case only add) the same x's to get 10x^2+6x+169=25. Now bring the 25 over to the left to get 10x^2+6x+144=0. Divide through by 2 to simplify to get 5x^2+3x+72=0. Then factorise to get (x+3)(5x+24)=0. Then separately equal the two brackets with 0. Then X are x=-3, x=-(24/5). Then sub these back into the equation given by the question. This case y-3x=13 as its easier to calculate. So y=4, y=-(7/5).

SS
Answered by Shun S. Maths tutor

22427 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How to multiply and divide mixed fractions


OPG is a triangle. N is point on OG such that ON : NG = 2 : 3. OP = a, PG = b. Express ON in terms of A and B.


Solve x^3 - 25 = 103 - x^3


Claire drove from Manchester to London, it took her 4 hours at an average speed of 85 km/h. Matt drove from Manchester to London, it took him 5 hours. Assuming he took the same route as Claire and took no breaks, work out his average speed in km/h.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning