Find the tangent to the curve y = x^3 - 2x at the point (2, 4). Give your answer in the form ax + by + c = 0, where a, b and c are integers.

y = x3- 2xdy/dx = 3x2 -2plugging in x = 2, therefore gradient = 10using the formula to get the equation of a line y -y1=m(x - x1)substitute y1=4 and x1=2 to get the answer-10x + y + 16 = 0

KS
Answered by Kevalee S. Maths tutor

5988 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the pair of simultaneous equations; (1) y + 4x + 1 = 0, (2) y^2 + 5x^2 + 2x = 0 .


Why is the derivative of a function its gradient?


How do you solve a Differential equation using integrating factors?


Find dy/dx when y = (3x-1)^10


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning