How do I integrate ln(x)?

This is a very cunning application of the integration by parts rule. Although it might look at first like integration by parts doesn't apply here since there is only the one factor, there is actually a hidden factor of 1 (since anything multiplied by 1 is itself). Thus we can set u = ln(x) and dv/dx = 1. This gives us du/dx = 1/x (since we already know how to differentiate ln(x)) and v = x. From here, we apply the integration by parts rule to get (after some rearrangement) xln(x) - x + C.Once you have seen this trick applied to ln(x), you can use it to do some other difficult integrals too.

SP
Answered by Seb P. Maths tutor

3065 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrating sin^5(x)cos(x) (in slow logical steps)


Solve the differential equation dx/dt = -2(x-6)^(1/2) for t in terms of x given that x = 70 when t = 0.


I don't understand the point of differentiation or integration


A small stone is projected verically upwards from a point O with a speed of 19.6ms^-1. Modeeling the stone as a particle moving freely under gravity find the time for which the stone is more than 14.6m above O


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences