Find the integral of y= e^3x / 1+e^x using calculus.

First, you use the substitution u=1+ex which implies that du=ex dx. Then, you factorise e3x = e2x ex and replace ex dx with du. Then by rearranging, e2x= (u-1)2 , so you are now ready to substitute the x s with u s. Therefore, the integration becomes ∫(u-1)2 /u du. Then by expanding and simplifying the brackets the integral becomes ∫u-2+ (1/u) du so we now integrate and the integral becomes u2/2 -2u + lnu + C'. But then, we need to substitute the x's back into the equation so u2/2 = (1+ex)2/2 = (1/2)e2x+ex+(1/2) , 2u= 2ex+2 and lnu=ln(1+ex). So the final answer is ∫y= (1/2)e2x+ 3ex+ (5/2) + ln(1+ex) + c , where c is a constant.

AI
Answered by Aliki I. Maths tutor

15842 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve dy/dx= (x√(x^2+3))/e^2y given that y=0 when x=1, giving your answer in the form y = f(x)


Using the limit definition of the derivative, find the derivative of f(x)=sin(3x) at x=2π


Find the gradient of the curve (x^3)-4(y^2)=12xy at the point P(-8,8)


Why is |z| = 1 a circle of radius one? (FP2)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences