Find the integral of y= e^3x / 1+e^x using calculus.

First, you use the substitution u=1+ex which implies that du=ex dx. Then, you factorise e3x = e2x ex and replace ex dx with du. Then by rearranging, e2x= (u-1)2 , so you are now ready to substitute the x s with u s. Therefore, the integration becomes ∫(u-1)2 /u du. Then by expanding and simplifying the brackets the integral becomes ∫u-2+ (1/u) du so we now integrate and the integral becomes u2/2 -2u + lnu + C'. But then, we need to substitute the x's back into the equation so u2/2 = (1+ex)2/2 = (1/2)e2x+ex+(1/2) , 2u= 2ex+2 and lnu=ln(1+ex). So the final answer is ∫y= (1/2)e2x+ 3ex+ (5/2) + ln(1+ex) + c , where c is a constant.

AI
Answered by Aliki I. Maths tutor

17603 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=(4x - 5)^5 by using the chain rule.


Given y = 2sin(θ) and x = 3cos(θ) find dy/dx.


Show that, for all a, b and c, a^log_b (c) = c^log_b (a).


A projectile is thrown from the ground at 30 degrees from the horizontal direction with an initial speed of 20m/s. What is the horizontal distance travelled before it hits the ground? Take the acceleration due to gravity as 9.8m/s^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning