Find the integral of y= e^3x / 1+e^x using calculus.

First, you use the substitution u=1+ex which implies that du=ex dx. Then, you factorise e3x = e2x ex and replace ex dx with du. Then by rearranging, e2x= (u-1)2 , so you are now ready to substitute the x s with u s. Therefore, the integration becomes ∫(u-1)2 /u du. Then by expanding and simplifying the brackets the integral becomes ∫u-2+ (1/u) du so we now integrate and the integral becomes u2/2 -2u + lnu + C'. But then, we need to substitute the x's back into the equation so u2/2 = (1+ex)2/2 = (1/2)e2x+ex+(1/2) , 2u= 2ex+2 and lnu=ln(1+ex). So the final answer is ∫y= (1/2)e2x+ 3ex+ (5/2) + ln(1+ex) + c , where c is a constant.

AI
Answered by Aliki I. Maths tutor

16734 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I find the stationary point of y = e^2x cos x?


Find the x-coordinates of any stationary points of the equation y = x^3 - 2x + 4/x


What are the roots of 3x^2 + 13x + 4 ?


How do polar coordinate systems work?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning