Simplify √32+√18 to a*√2 where a is an integer

So firstly, we need to know what type of answer we are aiming for. The question tells us to put our answer in the format a√2 where a is an integer. As we know from previous work, an integer is a whole number, so shouldn't have any fraction or decimal after it. Next we know the answer should be a multiple of √2. To achieve this, we must break down and complete the sum in the question.So, starting with the first term, √32, we know that 32 has multiple factors, 1, 2, 4, 8, 16, and 32. This means we can write 32 as a multiple of two of these numbers, contained within the square root sign, e.g. √(216). Now, once you have written 32 as a multiple of two separate numbers, we can then write it as √2√16. Now, here we have chosen 216 deliberately, as we want to end up with a multiple of √2. We can now simplify this further by noting that √16 = 4, so the √32 can be re-written as 4√2. Doing this again the the √18 we see that it can be rewritten as 3√2. Now we have a sum of multiples of √2. By completing this sum we have now answered the question in the format it asked for.

AH
Answered by Alexander H. Maths tutor

7336 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find X log(x)=4 Base 10


What are the parameters of the Poisson distribution?


Binomial expansion of (1+4x)^5 up to x^2


There are two lines in the x-y plane. The points A(-2,5) and B(3,2) lie on line one (L1), C(-1,-2) and D(4,1) lie on line two (L2). Find whether the two lines intersect and the coordinates of the intersection if they do.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning