How do you integrate the equation x^2 + 4x + 3 dx? (

Integrating the equations: x2 + 4x + 3 dx. To integrate, the method is to look each parts of the equation, e.g. the x2 firstly. We would add 1 to the power to get x3 . Then we would divide this by our new power (3) to get 1/3 x3. Next we would look at 4x: We can see that x here is to the power 1. So again as before, we would add 1 to the power to get 4x2. Then we divide by the new power to get 2x2. Next is the 3: This is interesting as there is no x here, however we can think of the 3 as 3x0. This is because x0 is equal to 1. So if we are to integrate we would add 1 to the power and divide by the new power as before to get: 3x. When integrating we also have to take into account the constant (c) that we add to our new equation. So our final equation would be 1/3 x3 + 2x2+ 3x + c.

SN
Answered by Saba N. Maths tutor

7361 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

x is an angle, if 180 > x > 90 and sinx = √2 / 4 what is the value of angle x


how do I differentiate?


I'm supposed to calculate the differential of f(x)= sin(x)*ln(x)*(x-4)^2 using the product rule. I know what the product rule is but I can't split this into two bits that are easy to differentiate. How do I do it?


Differentiation basics: What is it?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences