A curve is defined by the equation y = (x + 3)(x – 4). Find the coordinates of the turning point of the curve.

The turning point of a curve is the point at which it will turn, therefore, either the maximum or minimum point. Firstly, you need to expand out the brackets so the equation looks like a standard curve equation. When expanded, the equation will be y = x2 – x – 12. The turning point will be when dy/dx is equal to 0.Therefore when the curve equation is differentiated you get 2x - 1 . Set this to 0.When solved, x will equal 0.5 . This is the x coordinate of the turning point. You need to find the y coordinate as well. To do this, fill 0.5 back into the original curve equation where an x is. The equation will now read, y = 0.25 - 0.5 - 12 . Y will equal -12.25 . Therefore the turning point will be at (0.5, -12.25) . You have now finished the question.

CM
Answered by Clare M. Further Mathematics tutor

2682 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

This is a question from a past paper: https://prnt.sc/r6jnxc


How can I find the equation of a straight line on a graph?


Why does the discriminant b^2-4ac determine the number of roots of the quadratic equation ax^2+bx+c=0?


Why is it that when 'transformation A' is followed by 'transformation B', that the combined transformation is BA and not AB?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences