Use the Chain Rule to differentiate the following equation: y=e^(3-2x)

Chain Rule: dy/dx = dy/du x du/dxy=e3-2xSubstitute u for the power (3-2x) y = eu u = 3-2xdy/du = eu du/dx = -2dy/dx = -2eu = -2e3-2x

JW
Answered by Jordan W. Maths tutor

3765 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Calculate the distance of the centre of mass from AB and ALIH of the uniform lamina.


A matrix M has eigenvectors (3,1,0) (2,8,2) (1,1,6) with corresponding eigenvalues 1, 6, 2 respectively. Write an invertible matrix P and diagonal matrix D such that M=PD(P^-1), hence calculate M^5.


Using integration by parts, and given f(x) = 3xcos(x), find integrate(f(x) dx) between (pi/2) and 0.


How do I differentiate y=x^x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning