Use the Chain Rule to differentiate the following equation: y=e^(3-2x)

Chain Rule: dy/dx = dy/du x du/dxy=e3-2xSubstitute u for the power (3-2x) y = eu u = 3-2xdy/du = eu du/dx = -2dy/dx = -2eu = -2e3-2x

JW
Answered by Jordan W. Maths tutor

3462 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use implicit differentiation to find dy/dx of a curve with equation x^3 + yx^2 = y^2 + 1.


A curve C is mapped by the equation ( 1+x)(4-x). The curve intersects the x-axis at x = –1 and x = 4. A region R is bounded by C and the x-axis. Use calculus to find the exact area of R.


What is the natural logarithm?


Rewrite ... logF=logG+logH−log(1/M)−2*logR ... in the form F=... using laws of logarithms


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences