A curve has equation y = 20x - x^2 - 2x^3 . The curve has a stationary point at the point M where x = −2. Find the x- coordinate of the other stationary point of the curve

A stationary point on a curve is when the differential of the equation of the curve = 0. In other words when dy/dx = 0Take the equation in the question: y = 20x - x2 - 2x3A simple rule to find the differential of the curve is to multiply that power by the value and drop that power by one. e.g. the differential of 2x3: dy/dx = 6x2.Therefore, dy/dx = 20 - 2x - 6x2.As the stationary point is when dy/dx = 0. Therefore, 20 - 2x - 6x2 = 0.factorise this quadratic. (x + 2 )(-6x + 10) = 0Therefore, the other stationary point is x = 10/6 which can be simplified to x = 5/3

HJ
Answered by Henry J. Maths tutor

3872 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x) = e^(sin2x) , 0 ≤ x ≤ pi (a). Use calculus to find the coordinates of the turning points on the graph of y = f(x)


i) Using implicit differentiation find dy/dx for x^2 + y^2 = 4 ii) At what points is the tangent to the curve parallel to the y axis iii) Given the line y=x+c only intersects the circle once find c given that c is positive.


x = t^3 + t, y = t^2 +1, find dy/dx


If y = (4x^2)ln(x) then find the second derivative of the function with respect to x when x = e^2 (taken from a C3 past paper)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning