Show that (x + 1)(x + 2)(x + 3) can be written in the form ax3 + bx2 + cx + d where a, b, c and d are positive integers.

lets expand the first two brackets first, so x * x gives x2, x * 2 gives 2x, x * 1 gives x and 1 * 2 = 2. 2x and x are both in terms of x so we add these together to get 3x, giving us the quadratic (x2 + 3x + 2). now we expand this bracket with (x +3). x2 * x = x3x2 * 3 = 3x2 3x * x = 3x2 3x * 3 = 9x 2 * x = 2x 2 * 3 = 6 then when we add all the like terms together we get x3+ 6x2+ 11x + 6 so a=1, b=6, c=11 and d= 6

AC
Answered by Annunzia C. Maths tutor

27285 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Write the number 0.0534 in standard form (1 mark)


Expand and simplify (3x + 2)(4x - 3).


How to convert worded problems to solvable inequalities.


David travels from home to work at 30 mph. At the end of the day, he travels from work back home via the same route at 40 mph. What is his average speed while travelling? (Give your answer as a simplified fraction) (None-Calculator)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning