Differentiate the equation y^2 + y = x^3 + 2x

To answer this question you must use implicit differentiation due to there being both x and y terms. Consequently you must differentiate each term individually as you would usually (by multiplying by the power and taking one off the power) but for the y terms due to chain rule the differentiated term must also be multiplied by dy/dx. Consequently the answer becomes: 2y*dy/dx + dy/dx = 3x^2 + 2. The equation must then be rearranged to make dy/dx the subject dy/dx (2y + 1) = 3x^2 + 2 Therefore dy/dx = (3x^2 + 2)/(2y+1)

DW
Answered by Daisy W. Maths tutor

3070 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the inverse of y = (5x-4) / (2x+3)


y = x*(x-2)^-1/2. Prove dy\dx = (x-4)/2*(x-2)^3/2


A projectile is thrown from the ground at 30 degrees from the horizontal direction with an initial speed of 20m/s. What is the horizontal distance travelled before it hits the ground? Take the acceleration due to gravity as 9.8m/s^2


A curve has an equation: (2x^2)*y +2x + 4y – cos(pi*y) = 17. Find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences