Differentiate the equation y^2 + y = x^3 + 2x

To answer this question you must use implicit differentiation due to there being both x and y terms. Consequently you must differentiate each term individually as you would usually (by multiplying by the power and taking one off the power) but for the y terms due to chain rule the differentiated term must also be multiplied by dy/dx. Consequently the answer becomes: 2y*dy/dx + dy/dx = 3x^2 + 2. The equation must then be rearranged to make dy/dx the subject dy/dx (2y + 1) = 3x^2 + 2 Therefore dy/dx = (3x^2 + 2)/(2y+1)

DW
Answered by Daisy W. Maths tutor

3511 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y=((3x+1)^2)*cos(3x), find dy/dx.


Evaluate the indefinite integral when the integrand function is tan(x).


Q4 on 2017 Edexcel C4 paper, concerns differentiation of multiple variables.


Find the derivative and following function and hence find the value of coordinates for when the function is at a stationary point:


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning