Differentiate the equation y^2 + y = x^3 + 2x

To answer this question you must use implicit differentiation due to there being both x and y terms. Consequently you must differentiate each term individually as you would usually (by multiplying by the power and taking one off the power) but for the y terms due to chain rule the differentiated term must also be multiplied by dy/dx. Consequently the answer becomes: 2y*dy/dx + dy/dx = 3x^2 + 2. The equation must then be rearranged to make dy/dx the subject dy/dx (2y + 1) = 3x^2 + 2 Therefore dy/dx = (3x^2 + 2)/(2y+1)

DW
Answered by Daisy W. Maths tutor

3255 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

intergrate xcos(2x) with respect to x


differentiate parametrically y=3t+4 and x=2t^2 +3t-5


How do I prove that an irrational number is indeed irrational?


Given that y = 3x(^2) + 6x(^1/3) + (2x(^3) - 7)/(3(sqrt(x))) when x > 0 find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning