Differentiate the equation y^2 + y = x^3 + 2x

To answer this question you must use implicit differentiation due to there being both x and y terms. Consequently you must differentiate each term individually as you would usually (by multiplying by the power and taking one off the power) but for the y terms due to chain rule the differentiated term must also be multiplied by dy/dx. Consequently the answer becomes: 2y*dy/dx + dy/dx = 3x^2 + 2. The equation must then be rearranged to make dy/dx the subject dy/dx (2y + 1) = 3x^2 + 2 Therefore dy/dx = (3x^2 + 2)/(2y+1)

DW
Answered by Daisy W. Maths tutor

3506 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations: y+4x+1=0 and y^2+5x^2+2x=0


What is the best way to revise for a Maths A-level?


Prove that 1+2+...+n = n(n+1)/2 for all integers n>0. (Hint: Use induction.)


A curve has equation y = 2x^5 + 5x^4 1 . (a) Find: (i) dy/ dx [2 marks] (ii) d^2y/ dx^2 (b) The point on the curve where x ¼ 1 is P. (i) Determine whether y is increasing or decreasing at P, giving a reason for your answer.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning