Find all solutions to the trig equation 2sin(x)^2 + 3sin(x) - 2 = 0 in the range 0 <= x <= 360 degrees

Assuming knowledge of solving regular quadratic equations.Treat this as a regular quadratic equation, except it is in terms of sin(x) instead of just x as you might be used to.So using the quadratic equation (write it on the whiteboard, Toby), we get that sin(x) = ( -3 + sqrt(3^2 - 42(-2)) )/22 and sin(x) = ( -3 - sqrt(3^2 - 42*(-2)) )/2*2.These simplify down to sin(x) = 1/2 and sin(x) = -2.Multiplying through by inverse sine and remembering arcsin(sin(x)) = x, we get x = arcsin(1/2) and x=arcsin(-2).The second equation has no solution, but the first solves as x=30degrees.Bearing the sin graph in mind (draw it Toby), we see that x=1/2 crosses the graph twice in the range 0 to 360 degrees, so there is another solution we have to find.Using the cast diagram (again, draw it Toby), we know that for sine, other solutions can be found by taking our known solutions and taking them away from 180degrees. So since x =30, the other solution is 180-30=150.Total solution set for this question is therefore x=30,150 degrees

TM
Answered by Toby M. Maths tutor

4058 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The point A lies on the curve y=5(x^2)+9x , The tangent to the curve at A is parralel to the line 2y-x=3. Find an equation to this tangent at A.


1. A small stone is dropped from a height of 25 meters above the ground. i) Find the time taken for the stone to reach the ground ii) Find the speed of the stone as it reaches the ground


The function f(x)=x^2 -2x -24x^(1/2) has one stationary point. Find the value of x when f(x) is stationary, and hence determine the nature of this stationary point.


Find all values of x in the interval 0 ≤ x ≤ 2pi for 2sin(x)tan(x)=3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences