The parametric equations of a curve are: x = cos2θ y = sinθcosθ. Find the cartesian form of the equation.

x = cos2θ  y = sinθcosθcos2θ = cos2 θ  - sin2θ cos2 θ  + sin2θ  = 12cos2 θ  = 1 + cos2θ cos2 θ  = 1/2(1 + x)2sin2θ  = 1 - cos2θ sin2θ  = 1/2 (1 - x)y2= sin2θcos2 θy2=  ( 1/2(1 + x)) . (1/2 (1 - x))4y2 = 1 - x2 x2 + 4y2 = 1

AN
Answered by Amelia N. Maths tutor

8386 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is a limit?


How would I find the approximate area enclosed by the expression e^x*sin(x)*x^3 on an infinite scale?


Express (3x^2 - 3x - 2)/(x-1)(x-2) in partial fractions


Why is the derivative of x^2 equal to 2x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning