How to find the angle between two 3-dimensional vectors:

The formula to find the cosine of the angle is: cosA= u.v/|u|x|v|; 1.u.v means that you multiply the x coordinates together, then the y coordinates and the z coordinates, and add them all together: (x1x2+y1y2+z1z2); 2.|u|x|v| means that you have to find the distance from the origin forboth coordinates and times them together: √(x12+y12+z12)√(x22+y22+z22). 3. This means that if vector u is (2,3,4) and vector v is (5,6,7), the cosine of the angle between them willbe:cosA=(2x5+3x6+4x7)/√(22+32+42)x√(52+62+72) = (10+18+28)/√(4+9+16)x√(25+36+49)=56/√29x√110=0.9915; and therefore A= cos-10.9915= 7.47579˚≈ to 3 s.f.

FF
Answered by Fruzsina F. Maths tutor

4506 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would you expand (x+5y)^5?


Differentiate 6x^(7/2)-5x^2+7


By using the substitution, x = 2sin(y) find the exact value of integral sqrt(1/3(4-x^2)) dx with limits 0 and 1.


Perhaps an introduction to integration with a simple integral, e.g. the integral of x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences