How would you work out the equation of the normal at a point (2,5) given the equation of a line?

You are given the equation of a line in the form of y=mx+c. From this, you know that 'm' represents the gradient, which can also be represented as dy/dx. We now need to work out the gradient of the normal line. Using the equation M1 multiplied by M2 = -1, if M1 = 2, then M2 = -1/2. Now we have the gradient of the normal line, and as we are given the coordinates of the point of intersection, we can now use the equation y-y1=m(x-x1) where y1 represents the y-coordinate and x1 represents the x-coordinate to deduce the equation of the normal. If asked, we can also put it in the form y=mx+c.

RC
Answered by Rohil C. Maths tutor

3675 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If y = exp(x^2), find dy/dx


Express 3cos(theta) + 5sin(theta) in the form Rcos(theta - alpha) where R and alpha are constants, R>0 and 0<alpha<90. Give the exact value of R and the value of alpha to 2dp.


Using mathematical induction, prove De Moivre's Theorem.


What is dy/dx when y=ln(6x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning