How would you work out the equation of the normal at a point (2,5) given the equation of a line?

You are given the equation of a line in the form of y=mx+c. From this, you know that 'm' represents the gradient, which can also be represented as dy/dx. We now need to work out the gradient of the normal line. Using the equation M1 multiplied by M2 = -1, if M1 = 2, then M2 = -1/2. Now we have the gradient of the normal line, and as we are given the coordinates of the point of intersection, we can now use the equation y-y1=m(x-x1) where y1 represents the y-coordinate and x1 represents the x-coordinate to deduce the equation of the normal. If asked, we can also put it in the form y=mx+c.

RC
Answered by Rohil C. Maths tutor

3645 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that 4(cosec x)^2 - (cot x)^2 = k, express sec x in terms of k.


Solve |3x+1| = 1


The equation of a circle is x^2+y^2-6x-4y+4=0. i) Find the radius and centre of the circle. ii) Find the coordinates of the points of intersection with the line y=x+2


How do I integrate 4x*exp(x^2 - 1) with respect to x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning